List 10
Review for Exam 2
240. Calculate the following limits, if they exist:
(a) $\lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x^{2}-2 x-8}$
(c) $\lim _{x \rightarrow \infty} x e^{-x}$
(b) $\lim _{x \rightarrow 4} \frac{x^{2}+x-12}{x^{2}-2 x-8}$
(d) $\lim _{x \rightarrow 0^{+}} x^{2} \ln (x)$
(e) $\lim _{x \rightarrow 1} x^{2} \ln (x)$
241. Compute $\lim _{x \rightarrow 0} \frac{2 e^{x}-x^{2}-2 x-2}{x^{3}}$.
242. Compute $\lim _{x \rightarrow 0}(\cos 6 x)^{1 / x^{2}}$. Hint: First compute $\lim _{x \rightarrow 0} \ln \left((\cos 6 x)^{1 / x^{2}}\right)$.
243. Give an equation for the tangent line to $y=\sqrt{x}+x^{3}$ at $x=1$.
244. Use the Quotient Rule and the Product Rule to compute $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for $y=\frac{\ln (x) e^{x}}{x^{2}}$.
245. Give an equation for the tangent line to $y=e^{4 x \cos x}$ at $x=0$.
246. Calculate the derivative of $e^{5 x}$ in two ways:
(a) Use the rule $\frac{\mathrm{d}}{\mathrm{d} x}\left[e^{x}\right]=e^{x}$ along with the Chain Rule (here $e^{5 x}=f(g(x))$ with $f(x)=e^{x}$ and $\left.g(x)=5 x\right)$.
(b) Use algebra to rewrite $e^{5 x}=\left(e^{5}\right)^{x}$ and then find the derivative of that function using the rule $\frac{\mathrm{d}}{\mathrm{d} x}\left[a^{x}\right]=a^{x} \cdot \ln (a)$.
247. Calculate the derivative $\ln (5 x)$ in two ways:
(a) Use the rule $\frac{\mathrm{d}}{\mathrm{d} x}[\ln (x)]=\frac{1}{x}$ along with the Chain Rule (here $\ln (5 x)=$ $f(g(x))$ with $f(x)=\ln (x)$ and $g(x)=5 x)$.
(b) Use algebra to rewrite $\ln (5 x)=\ln (x)+\ln (5)$ and then find the derivative of that function.
248. On what interval(s) is the function $x^{3}-6 x+11$ increasing?
249. On what interval(s) is the function $x^{3}-6 x+11$ concave up?
250. Find the $x$-coordinates of all critical points of $(2 x+3) e^{4 x}$.
251. Find the $x$-coordinates of all inflection points of $x^{4}+9 x^{3}-15 x^{2}+17$.
252. Find the $x$-coordinates of all inflection points of $x^{5}+10 x^{4}-50 x^{3}+80 x^{2}-15$.
253. Find the absolute minimum of $f(x)=\frac{1}{4} x^{4}-4 x^{3}+22 x^{2}-48 x+32$ on $[1,9]$.
254. Find the critical point(s) of $g(x)=\sqrt[3]{3 x^{2}+4 x+1}$.
255. Find all the critical point(s) of the function

$$
f(x)=x^{4}-12 x^{3}+30 x^{2}-28 x
$$

and classify each one as a local minimum, local maximum, or neither.
256. Find all the critical point(s) of the function

$$
f(x)=x(6-x)^{2 / 3}
$$

and classify each one as a local minimum, local maximum, or neither.
$\geqq$ 257. Suppose $f(x)$ is a differentiable function for which $f(6)=2$ and $f^{\prime}(6)=0$ and $f^{\prime \prime}(6)=3$. Does the function have a local minimum at $x=6$ ? A local maximum?
258. Suppose $f(x)$ is a differentiable function for which $f(3)=0$ and $f^{\prime}(3)=2$ and $f^{\prime \prime}(3)=6$. Does the function have a local minimum at $x=3$ ? A local maximum?
259. Calculate the value of $\int_{-2}^{2}\left(4-x^{2}\right) \mathrm{d} x$.
260. Find the value of $\int_{-2}^{2} \sqrt{4-x^{2}} \mathrm{~d} x$.
261. Compute the following indefinite integrals:
(a) $\int 6 \mathrm{~d} x$
(d) $\int \frac{8}{q} \mathrm{~d} q$
(b) $\int(2 x+6) \mathrm{d} x$
(e) $\int x^{2} \cos \left(x^{3}\right) \mathrm{d} x$
(c) $\int \frac{8}{x} \mathrm{~d} x$
(f) $\int x^{2} \cos (x) \mathrm{d} x$
262. Compute the following definite integrals:
(a) $\int_{1}^{5}(2 x+6) \mathrm{d} x$
(b) $\int_{0}^{\pi} \frac{1}{3} \sin (u) \mathrm{d} u$
(c) $\int_{1}^{4}\left(x^{3}+2 x-7\right) \mathrm{d} x$
(d) $\int_{0}^{\pi} 2 e^{t} \sin (5 t) \mathrm{d} t$
263. Compute the following integrals of rational functions:
(a) $\int \frac{2 x+3}{10 x^{2}+30 x+40} \mathrm{~d} x$
(b) $\int \frac{10 x^{2}+30 x+40}{5 x} \mathrm{~d} x$
(c) $\int_{1}^{3} \frac{10 x^{2}+30 x+40}{5 x} \mathrm{~d} x$
(d) $\int \frac{3}{10 x^{2}+40} \mathrm{~d} x$
(e) $\int_{0}^{2} \frac{3}{10 x^{2}+40} \mathrm{~d} x$
(f) $\int_{2}^{\infty} \frac{1}{x^{5}} \mathrm{~d} x$
264. Find the area of the domain

$$
\left\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq 5 \sin \left(\frac{x}{2}\right)\right\}
$$

265. Find the area of the domain

$$
\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq 2 x \sin (3 x)+4 x\} .
$$

266. Find the area of the region bounded by the curves $y=x^{2}$ and $y=10-x^{2}$.
267. Calculate the area of the region bounded by $x=1, y=1$, and $y=\ln (x)$.
268. (a) Find the area of the region bounded by $y=x^{2}+a$ and $y=a x^{2}+2$, where $a \in[0,1)$ is a parameter (your answer will be a formula using $a$ ).
(b) Among all such shapes, what is the smallest possible area?
269. Calculate the volume of the solid formed by rotating

$$
\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq x \sqrt{\sin x}\}
$$

around the $x$-axis.
270. Calculate the volume of the solid formed by rotating the region from Task 266 around the $y$-axis.
271. Find the volume of the solid formed by rotating the region bounded by $y=$ $-x^{2}+10 x-21$ and the $x$-axis around the $x$-axis.

