Analysis 1, Summer 2023 List 10 Review for Exam 2

240. Calculate the following limits, if they exist:

(a) $\lim_{x \to 4} \frac{x^2 - x - 12}{x^2 - 2x - 8}$ (b) $\lim_{x \to 4} \frac{x^2 + x - 12}{x^2 - 2x - 8}$ (c) $\lim_{x \to \infty} xe^{-x}$ (d) $\lim_{x \to 0^+} x^2 \ln(x)$ (e) $\lim_{x \to 1} x^2 \ln(x)$

241. Compute $\lim_{x \to 0} \frac{2e^x - x^2 - 2x - 2}{x^3}$.

242. Compute $\lim_{x\to 0} (\cos 6x)^{1/x^2}$. Hint: First compute $\lim_{x\to 0} \ln\left((\cos 6x)^{1/x^2}\right)$.

243. Give an equation for the tangent line to $y = \sqrt{x} + x^3$ at x = 1.

244. Use the Quotient Rule and the Product Rule to compute $\frac{\mathrm{d}y}{\mathrm{d}x}$ for $y = \frac{\ln(x)e^x}{r^2}$.

245. Give an equation for the tangent line to $y = e^{4x \cos x}$ at x = 0.

- 246. Calculate the derivative of e^{5x} in two ways:
 - (a) Use the rule $\frac{d}{dx} [e^x] = e^x$ along with the Chain Rule (here $e^{5x} = f(g(x))$ with $f(x) = e^x$ and g(x) = 5x).
 - (b) Use algebra to rewrite $e^{5x} = (e^5)^x$ and then find the derivative of that function using the rule $\frac{d}{dx}[a^x] = a^x \cdot \ln(a)$.
- 247. Calculate the derivative $\ln(5x)$ in two ways:
 - (a) Use the rule $\frac{d}{dx} [\ln(x)] = \frac{1}{x}$ along with the Chain Rule (here $\ln(5x) = f(g(x))$) with $f(x) = \ln(x)$ and g(x) = 5x).
 - (b) Use algebra to rewrite $\ln(5x) = \ln(x) + \ln(5)$ and then find the derivative of that function.
- 248. On what interval(s) is the function $x^3 6x + 11$ increasing?
- 249. On what interval(s) is the function $x^3 6x + 11$ concave up?
- 250. Find the x-coordinates of all critical points of $(2x+3)e^{4x}$.
- 251. Find the x-coordinates of all inflection points of $x^4 + 9x^3 15x^2 + 17$.
- 252. Find the x-coordinates of all inflection points of $x^5 + 10x^4 50x^3 + 80x^2 15$.
- 253. Find the absolute minimum of $f(x) = \frac{1}{4}x^4 4x^3 + 22x^2 48x + 32$ on [1,9].
- 254. Find the critical point(s) of $g(x) = \sqrt[3]{3x^2 + 4x + 1}$.

255. Find all the critical point(s) of the function

$$f(x) = x^4 - 12x^3 + 30x^2 - 28x$$

and classify each one as a local minimum, local maximum, or neither.

256. Find all the critical point(s) of the function

$$f(x) = x(6-x)^{2/3}$$

and classify each one as a local minimum, local maximum, or neither.

- ≈ 257 . Suppose f(x) is a differentiable function for which f(6) = 2 and f'(6) = 0 and f''(6) = 3. Does the function have a local minimum at x = 6? A local maximum?
- ≈ 258 . Suppose f(x) is a differentiable function for which f(3) = 0 and f'(3) = 2 and f''(3) = 6. Does the function have a local minimum at x = 3? A local maximum?
 - 259. Calculate the value of $\int_{-2}^{2} (4-x^2) dx$.

260. Find the value of
$$\int_{-2}^{2} \sqrt{4-x^2} \, \mathrm{d}x$$
.

261. Compute the following indefinite integrals:

(a)
$$\int 6 \, dx$$

(b) $\int (2x+6) \, dx$
(c) $\int \frac{8}{x} \, dx$
(d) $\int \frac{8}{q} \, dq$
(e) $\int x^2 \cos(x^3) \, dx$
(f) $\int x^2 \cos(x) \, dx$

262. Compute the following definite integrals:

(a)
$$\int_{1}^{5} (2x+6) dx$$

(b) $\int_{0}^{\pi} \frac{1}{3} \sin(u) du$
(c) $\int_{1}^{4} (x^{3}+2x-7) dx$
(d) $\int_{0}^{\pi} 2e^{t} \sin(5t) dt$

263. Compute the following integrals of rational functions:

(a)
$$\int \frac{2x+3}{10x^2+30x+40} \, \mathrm{d}x$$

(b) $\int \frac{10x^2+30x+40}{5x} \, \mathrm{d}x$

(c)
$$\int_{1}^{3} \frac{10x^{2} + 30x + 40}{5x} dx$$

(d) $\int \frac{3}{10x^{2} + 40} dx$
(e) $\int_{0}^{2} \frac{3}{10x^{2} + 40} dx$
(f) $\int_{2}^{\infty} \frac{1}{x^{5}} dx$

264. Find the area of the domain

$$\{(x,y): 0 \le x \le \pi, \ 0 \le y \le 5\sin(\frac{x}{2})\}$$

265. Find the area of the domain

$$\{(x,y): 0 \le x \le \pi, \ 0 \le y \le 2x\sin(3x) + 4x\}.$$

- 266. Find the area of the region bounded by the curves $y = x^2$ and $y = 10 x^2$.
- 267. Calculate the area of the region bounded by x = 1, y = 1, and $y = \ln(x)$.
- $\stackrel{\wedge}{\approx} 268$. (a) Find the area of the region bounded by $y = x^2 + a$ and $y = ax^2 + 2$, where $a \in [0, 1)$ is a parameter (your answer will be a formula using a).
 - (b) Among all such shapes, what is the smallest possible area?
 - 269. Calculate the volume of the solid formed by rotating

$$\{(x,y): 0 \le x \le \pi, \ 0 \le y \le x\sqrt{\sin x}\}$$

around the x-axis.

- 270. Calculate the volume of the solid formed by rotating the region from Task 266 around the y-axis.
- 271. Find the volume of the solid formed by rotating the region bounded by $y = -x^2 + 10x 21$ and the x-axis around the x-axis.